中国粉体网讯 近几年,碳化硅作为一种无机材料,其热度可与“半导体”、“芯片”、“集成电路”等相提并论,它除了是制造芯片的战略性半导体材料外,因其独有的特性和优势受到其它众多行业的青睐,可谓是一种明星材料。
图片来源于网络
随着集成电路成为了国家战略性产业,除碳化硅以外,很多半导体材料得以被研究开发,氮化铝无疑是其中最具有发展前景的半导体材料之一。在离将于2021年8月在河南郑州举办“2021第四届新型陶瓷技术与产业高峰论坛”不足4个月之际,中国粉体网开启了“粉体行业巡回调研”行动。在走访过程中,我们了解到众多企业都意识到氮化铝是一个研究热点,也将是一个市场热点,所以部分企业对此早有部署。今天我们就来了解一下氮化铝蕴藏着怎样的魅力。
氮化铝的研究历史
氮化铝是一种综合性能优良的陶瓷材料,对其研究可以追溯到一百多年前,它是由F.Birgeler和A.Geuhter在1862年发现的,并于1877年由J.W.MalletS首次合成了氮化铝,但在随后的100多年并没有什么实际应用,当时仅将其作为一种固氮剂用作化肥。
由于氮化铝是共价化合物,自扩散系数小,熔点高,导致其难以烧结,直到20世纪50年代,人们才首次成功制得氮化铝陶瓷,并作为耐火材料应用于纯铁、铝以及铝合金的熔炼。自20世纪70年代以来,随着研究的不断深入,氮化铝的制备工艺日趋成熟,其应用范围也不断扩大。尤其是进入21世纪以来,随着微电子技术的飞速发展,电子整机和电子元器件正朝微型化、轻型化、集成化,以及高可靠性和大功率输出等方向发展,越来越复杂的器件对基片和封装材料的散热提出了更高要求,进一步促进了氮化铝产业的蓬勃发展。
氮化铝特征
1、结构特征
氮化铝(AlN)是一种六方纤锌矿结构的共价键化合物,晶格参数为a=3.114,c=4.986。纯氮化铝呈蓝白色,通常为灰色或灰白色,是典型的III-Ⅴ族宽禁带半导体材料。
2、性能特征
氮化铝(AlN)具有高强度、高体积电阻率、高绝缘耐压、热膨胀系数、与硅匹配好等特性,不但用作结构陶瓷的烧结助剂或增强相,尤其是在近年来大火的陶瓷电子基板和封装材料领域,其性能远超氧化铝。
3、性能参数
表:氮化铝主要性能参数
由以上数据可以看到,与其它几种陶瓷材料相比较,氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。
氮化铝的导热机理
在氮化铝一系列重要的性质中,最为显著的是高的热导率。关于氮化铝的导热机理,国内外已做了大量的研究,并已形成了较为完善的理论体系。主要机理为:通过点阵或晶格振动,即借助晶格波或热波进行热的传递。量子力学的研究结果告诉我们,晶格波可以作为一种粒子——声子的运动来处理。热波同样具有波粒二象性。载热声子通过结构基元(原子、离子或分子)间进行相互制约、相互协调的振动来实现热的传递。如果晶体为具有完全理想结构的非弹性体,则热可以自由的由晶体的热端不受任何干扰和散射向冷端传递,热导率可以达到很高的数值。其热导率主要由晶体缺陷和声子自身对声子散射控制。
理论上AlN热导率可达320W·m-1·K-1,但由于AlN中的杂质和缺陷造成实际产品的热导率还不到200W·m-1·K-1。这主要是由于晶体内的结构基元都不可能有完全严格的均匀分布,总是存在稀疏稠密的不同区域,所以载流声子在传播过程中,总会受到干扰和散射。
氮化铝粉体的制备工艺
氮化铝粉体的制备工艺主要有直接氮化法和碳热还原法,此外还有自蔓延合成法、高能球磨法、原位自反应合成法、等离子化学合成法及化学气相沉淀法等。
1、直接氮化法
直接氮化法就是在高温的氮气气氛中,铝粉直接与氮气化合生成氮化铝粉体,其化学反应式为2Al(s)+N2(g)→2AlN(s),反应温度在800℃-1200℃。
其优点是工艺简单,成本较低,适合工业大规模生产。其缺点是铝粉表面有氮化物产生,导致氮气不能渗透,转化率低;反应速度快,反应过程难以控制;反应释放出的热量会导致粉体产生自烧结而形成团聚,从而使得粉体颗粒粗化,后期需要球磨粉碎,会掺入杂质。
2、碳热还原法
碳热还原法就是将混合均匀的Al2O3和C在N2气氛中加热,首先Al2O3被还原,所得产物Al再与N2反应生成AlN,其化学反应式为:
Al2O3(s)+3C(s)+N2(g)→2AlN(s)+3CO(g)
其优点是原料丰富,工艺简单;粉体纯度高,粒径小且分布均匀。其缺点是合成时间长,氮化温度较高,反应后还需对过量的碳进行除碳处理,导致生产成本较高。
3、高能球磨法
高能球磨法是指在氮气或氨气气氛下,利用球磨机的转动或振动,使硬质球对氧化铝或铝粉等原料进行强烈的撞击、研磨和搅拌,从而直接氮化生成氮化铝粉体的方法。
其优点是:高能球磨法具有设备简单、工艺流程短、生产效率高等优点。其缺点是:氮化难以完全,且在球磨过程中容易引入杂质,导致粉体的质量较低。
4、高温自蔓延合成法
高温自蔓延合成法是直接氮化法的衍生方法,它是将Al粉在高压氮气中点燃后,利用Al和N2反应产生的热量使反应自动维持,直到反应完全,其化学反应式为:
2Al(s)+N2(g)→2AlN(s)
其优点是高温自蔓延合成法的本质与铝粉直接氮化法相同,但该法不需要在高温下对Al粉进行氮化,只需在开始时将其点燃,故能耗低、生产效率高、成本低。其缺点是要获得氮化完全的粉体,必需在较高的氮气压力下进行,直接影响了该法的工业化生产。
5、原位自反应合成法
原位自反应合成法的原理与直接氮化法的原理基本类同,以铝及其它金属形成的合金为原料,合金中其它金属先在高温下熔出,与氮气发生反应生成金属氮化物,继而金属Al取代氮化物的金属,生产AlN。
其优点是工艺简单、原料丰富、反应温度低,合成粉体的氧杂质含量低。其缺点是金属杂质难以分离,导致其绝缘性能较低。
6、等离子化学合成法
等离子化学合成法是使用直流电弧等离子发生器或高频等离子发生器,将Al粉输送到等离子火焰区内,在火焰高温区内,粉末立即融化挥发,与氮离子迅速化合而成为AlN粉体。
其优点是团聚少、粒径小。其缺点是该方法为非定态反应,只能小批量处理,难于实现工业化生产,且其氧含量高、所需设备复杂和反应不完全。
7、化学气相沉淀法
它是在远高于理论反应温度,使反应产物蒸气形成很高的过饱和蒸气压,导致其自动凝聚成晶核,而后聚集成颗粒。
氮化铝的应用
1、压电装置应用
氮化铝具备高电阻率,高热导率(为Al2O3的8-10倍),与硅相近的低膨胀系数,是高温和高功率的电子器件的理想材料。
2、电子封装基片材料
常用的陶瓷基片材料有氧化铍、氧化铝、氮化铝等,其中氧化铝陶瓷基板的热导率低,热膨胀系数和硅不太匹配;氧化铍虽然有优良的性能,但其粉末有剧毒。
图片来源于网络
在现有可作为基板材料使用的陶瓷材料中,氮化硅陶瓷抗弯强度最高,耐磨性好,是综合机械性能最好的陶瓷材料,同时其热膨胀系数最小。而氮化铝陶瓷具有高热导率、好的抗热冲击性、高温下依然拥有良好的力学性能。可以说,从性能的角度讲,氮化铝与氮化硅是目前最适合用作电子封装基片的材料,但他们也有个共同的问题就是价格过高。
3、应用于发光材料
氮化铝(AlN)的直接带隙禁带最大宽度为6.2eV,相对于间接带隙半导体有着更高的光电转换效率。AlN作为重要的蓝光和紫外发光材料,应用于紫外/深紫外发光二极管、紫外激光二极管以及紫外探测器等。此外,AlN可以和III族氮化物如GaN和InN形成连续的固溶体,其三元或四元合金可以实现其带隙从可见波段到深紫外波段的连续可调,使其成为重要的高性能发光材料。
4、应用于衬底材料
AlN晶体是GaN、AlGaN以及AlN外延材料的理想衬底。与蓝宝石或SiC衬底相比,AlN与GaN热匹配和化学兼容性更高、衬底与外延层之间的应力更小。因此,AlN晶体作为GaN外延衬底时可大幅度降低器件中的缺陷密度,提高器件的性能,在制备高温、高频、高功率电子器件方面有很好的应用前景。
另外,用AlN晶体做高铝(Al)组份的AlGaN外延材料衬底还可以有效降低氮化物外延层中的缺陷密度,极大地提高氮化物半导体器件的性能和使用寿命。基于AlGaN的高质量日盲探测器已经获得成功应用。
5、应用于陶瓷及耐火材料
氮化铝可应用于结构陶瓷的烧结,制备出来的氮化铝陶瓷,不仅机械性能好,抗折强度高于Al2O3和BeO陶瓷,硬度高,还耐高温耐腐蚀。利用AlN陶瓷耐热耐侵蚀性,可用于制作坩埚、Al蒸发皿等高温耐蚀部件。此外,纯净的AlN陶瓷为无色透明晶体,具有优异的光学性能,可以用作透明陶瓷制造电子光学器件装备的高温红外窗口和整流罩的耐热涂层。
6、复合材料
环氧树脂/AlN复合材料作为封装材料,需要良好的导热散热能力,且这种要求愈发严苛。环氧树脂作为一种有着很好的化学性能和力学稳定性的高分子材料,它固化方便,收缩率低,但导热能力不高。通过将导热能力优异的AlN纳米颗粒添加到环氧树脂中,可有效提高材料的热导率和强度。
现阶段存在的问题
目前,氮化铝也存在一些问题。其一是粉体在潮湿的环境极易与水中羟基形成氢氧化铝,在AlN粉体表面形成氧化铝层,氧化铝晶格溶入大量的氧,降低其热导率,而且也改变其物化性能,给AlN粉体的应用带来困难。抑制AlN粉末的水解处理主要是借助化学键或物理吸附作用在AlN颗粒表面涂覆一种物质,使之与水隔离,从而避免其水解反应的发生。目前抑制水解处理的方法主要有:表面化学改性和表面物理包覆。
其二是氮化铝的价格高居不下,每公斤上千元的价格也在一定程度上限制了它的应用。制备氮化铝粉末一般都需要较高的温度,从而导致生产制备过程中的能耗较高,同时存在安全风险,这也是一些高温制备方法无法实现工业化生产的主要弊端。再者是生产制备过程中的杂质掺入或者有害产物的生成问题,例如碳化还原反应过量碳粉的去除问题,以及化学气相沉积法的氯化氢副产物的去除问题,这都要求制备氮化铝的过程中需对反应产物进行提纯,这也导致了生产制备氮化铝的成本居高不下。
2021第四届新型陶瓷技术与产业高峰论坛
8月13-14日,河南 郑州
http://cnpowder.mikecrm.com/TsX3Rdg
参考来源:
[1]杨清华等.氮化铝粉体制备的研究及展望.
[2]蒋周青等.氮化铝粉体制备技术的研究进展.
[3]王柳燕等.氮化铝粉体制备技术的研究现状与展望
[4]胡友静.氮化铝陶瓷的研究和应用进展
[5]邹清.氮化铝的研究进展
(中国粉体网编辑整理/山川)
注:图片非商业用途,存在侵权告知删除