参考价格
面议型号
品牌
产地
荷兰样本
暂无看了Lumicks超分辨单分子动力分析仪(荧光光镊)-C-Trap的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
荷兰Lumicks C-Trap
超分辨单分子动力分析仪(荧光光镊)--C-Trap,是世界上首款将光镊、共聚焦或 STED 超分辨显微镜和微流控系统结合的单分子操控仪器。C-Trap通过高度聚焦激光束产生的力来操作纳米/微米颗粒,实现了对生物分子的单分子操纵,并且结合力学检测系统和共聚焦或 STED 超分辨显微镜,可以定位反应的结合位点,并实时监测生物分子的单分子动力学特性。C-Trap可以揭示大量分子相互作用的机制,包括:DNA的修复、DNA的复制和转录、核糖体的翻译、生物分子马达和酶、细胞膜的相互作用、DNA-DNA的相互作用、DNA发夹结构动力学、DNA/RNA的结构动力学蛋白质的折叠(去折叠)、DNA的组织化和染色质化、细胞的运动机制等信息。
Lumicks 超分辨单分子动力分析仪技术特征:
√ 多重连续激光光阱捕获 √ ****的刚性范围 √ 较低的力学噪声 √ **的3D捕获定位 | √ 超稳定负压驱动微流体 √ 自动控制的微流控芯片 √ 高度相关的力学-荧光数据采集 | √ 多重共聚焦扫描荧光显微镜 √ 单光子灵敏度 √ 可升级到STED超分辨率 |
技术原理:
Lumicks超分辨单分子动力分析仪主要由微液流控制系统、光镊操纵系统、力学检测系统以及共聚焦(超分辨率显微镜)成像系统组成。微液流控制系统采用分通道集成设计,避免反应体系交叉污染,确保多步骤生物反应原位进行;光镊系统通过高度聚焦激光束产生的力来操作纳米或微米级的介电质颗粒,实现了对生物分子的单分子水平的操纵;结合力学检测系统和共聚焦(超分辨率显微镜)成像系统,同时从力学和光学角度,高精度定位反应的结合位点,实时监测生物分子的单分子动力学特性。
应用领域:
应用包括:利用 CTFM(Correlative Tweezers – Fluorescence Microscopy)揭示大量分子相互作用机制的详细信息,主要包括:
DNA的修复 | 中间纤维 | 核糖体的翻译 | 细胞的运动机制 |
DNA的复制和转录 | 生物分子马达和酶 | 细胞膜的相互作用 | DNA-DNA的相互作用 |
DNA发夹结构动力学 | DNA/RNA的结构动力学 | 蛋白质的折叠(去折叠) | DNA的组织化和染色质化 |
DNA-蛋白互作可视化 | 蛋白折叠/去折叠 |
小分子、酶活性的研究 | 细胞骨架、分子马达动力学的研究 |
点击图片查看应用案例详情:
DNA修复机制和非同源末端连接(NHEJ)单分子可视化 | 使用光镊在单分子水平检测蛋白折叠、去折叠和构象动力学 |
光镊结合STED超分辨技术揭示DNA与蛋白相互作用 | 机械力作用下DNA结构变化的实时可视化 |
C-Trap规格参数:
■ 光镊: 检测范围:50μ m×50μ m×35μ m(x,y,z) 独立光阱数目:1-4 光阱类型:持续的激光提供稳定精确的高强度捕获 力学检测分辨率: <0.1pN @100Hz, 2μ m 聚苯乙烯微球(由生物样品决定) **逃逸力:1000pN , 4.5μm 聚苯乙烯微球 应力稳定性:<1pN 光阱转角频率:0.1kHz-15kHz 光阱距离分辨率:<0.3nm @100Hz 小步移: <0.5nm 光阱移动特性:所有光阱可在 x,y 平面独立移动;1+2,3+4 可在三维空间成对移动 运动微球追踪精确度:<3nm @ 100Hz 视频分析 | ■ 共聚焦显微镜: 可视范围:50μm×35μm(x,y) 共聚焦颜色*:多可三色共用,从 488nm 到 647nm 之间的十种波长中选择 共聚焦分辨率: 衍射极限之内 STED 分辨率*:<35nm 扫描速度:线性扫描速度 200Hz 定位精度:<15nm 光斑定位精确度:<1nm 背景抑制极限:100nM @1ms 积分时间 敏感度:极低的亮度检测极限以及单光子计数。可检测单个 eGFP 其他值得注意的特点:和光镊**的结合,交互式体验 | |
■ u-Flux 微流控: 微流控流动系统:负压系统可以在层流环境下检测到亚纳米级别的位移 用于远程操控的自动阀 无位移偏差 单分子测量零干扰 多达11个注射器可以接到流动池上来实现复杂的多重蛋白分析 | ■ 软件: C-Trap便捷直观的双屏显示界面给您的实验操作带来极大便利;您可通过手动点击操纵杆或通过简单的命令来自动控制诸如光阱位置,平台位置,微流体以及数据记录等过程。以用户为中心的软件操作界面以及简易的操作流程使复杂的单分子实验过程(微球捕获,分子的连接,随后的操纵以及成像整个过程)在数分钟之内即可完成。 |
发表的文献列表:
1. Naqvi M M, Avellaneda M J, Roth A, et al. Polypeptide collapse modulation and folding stimulation by GroEL-ES. bioRxiv, 2020
2. Ghosh A, Zhou H X. Fusion Speed of Biomolecular Condensates. bioRxiv, 2020
3. Alshareedah I, Moosa M M, Raju M, et al. Phase Transition of RNA-protein Complexes into Ordered Hollow Condensates. bioRxiv, 2020
4. Meijering A E C, Biebricher A S, Sitters G, et al. Imaging unlabeled proteins on DNA with super-resolution. Nucleic acids research, 2020
5. Wruck F, Tian P, Kudva R, et al. The ribosome modulates folding inside the ribosomal exit tunnel. BioRxiv, 2020
6. Kraxner J, Lorenz C, Menzel J, et al. Post-Translational Modifications Soften Intermediate Filaments. bioRxiv, 2020
7. Avellaneda M J, Koers E J, Minde D P, et al. Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Communications Chemistry, 2020
8. Spakman D, King G A, Peterman E J G, et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific reports, 2020
9. Schaedel L, Lorenz C, Schepers A V, et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. bioRxiv, 2020
10. Avellaneda M J, Franke K B, Sunderlikova V, et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature, 2020
11. Hill C H, Napthine S, Pekarek L, et al. Structural studies of Cardiovirus 2A protein reveal the molecular basis for RNA recognition and translational control. bioRxiv, 2020
12. Qin Z, Bi L, Hou X M, et al. Human RPA activates BLM’s bidirectional DNA unwinding from a nick. Elife, 2020
13. Rill N, Mukhortava A, Lorenz S, et al. Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proceedings of the National Academy of Sciences, 2020
14. Mei L, de los Reyes S E, Reynolds M J, et al. Molecular mechanism for direct actin force-sensing by α-catenin. bioRxiv, 2020
15. Kucera O, Janda D, Siahaan V, et al. Anillin propels myosin-independent constriction of actin rings. bioRxiv, 2020
16. Schepers A V, Lorenz C, K?ster S. Tuning intermediate filament mechanics by variation of pH and ion charges. Nanoscale, 2020
17. Khawaja A, Itoh Y, Remes C, et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020
18. Sorkin R, Marchetti M, Logtenberg E, et al. Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical journal, 2020
19. Van Rosmalen M G M, Kamsma D, Biebricher A S, et al. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. Science Advances, 2020
20. Kretzer B, Kiss B, Tordai H, et al. Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines, 2020
21. Raja A, Hadizadeh N, Candelli A. Optical tweezers and multimodality imaging: a platform for dynamic single‐molecule analysis. The FASEB Journal, 2020
22. Zananiri R, Malik O, Rudnizky S, et al. Synergy between RecBCD subunits is essential for efficient DNA unwinding. Elife, 2019
23. Leicher R, Eva J G, Lin X, et al. PRC2 bridges non-adjacent nucleosomes to establish heterochromatin. bioRxiv, 2019
24. Tafoya S, Large S J, Liu S, et al. Using a system’s equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. Proceedings of the National Academy of Sciences, 2019
25. King G A, Burla F, Peterman E J G, et al. Supercoiling DNA optically. Proceedings of the National Academy of Sciences, 2019
26. Lorenz C, Forsting J, Schepers A V, et al. Lateral subunit coupling determines intermediate filament mechanics. Physical review letters, 2019
27. Kaur T, Alshareedah I, Wang W, et al. Molecular crowding tunes material states of ribonucleoprotein condensates. Biomolecules, 2019
28. Wasserman et al., Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell, 2019
29. Orsenski et al., Sites of high local frustration in DNA origami. Nature Communication, 2019
30. Newton et al., DNA stretching induces Cas9 off-target activity. Nature Structural Molecular Biology, 2019
31. Nanoletters, Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Marchetti et al., 2019
32. Zheng et al., Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communication, 2019
33. Gui et al., Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communication, 2019
34. Alshareedah et al., Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. JACS, 2019
35. Forsting et al., Vimentin intermediate filaments undergo irreversible conformational changes during cyclic loading. Nanoletters, 2019
36. Gutierrez-Escribano et al., A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances, 2019
37. Sarah Koster (University of Gottingen), Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances, 2018
38. Anthony Hyman (MPI-CBG), Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters, 2018
39. Sarah Koster (University of Gottingen), Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters, 2017
40. Ineke Brouwer,Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA and connect fragments of broken DNA.Nature, 2016
41. Douwe Kamsma, Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods, 2016
42. Nicholas A, Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophysical Journal,2016
43. Gerrit Sitters, Acoustic force spectroscopy. Nature methods, 2015
44. Andrea Candelli, Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. PNAS, 2014
45. Iddo Heller, STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature methods, 2014
各大用户遍布全球
暂无数据!