看了人工脂质膜重组电生理分析系统的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
德国Ionovation公司生产的Ionovation 电生理分析系统(单细胞膜片钳),是该领域zui新的产品之一,该产品克服了传统膜片钳的一系列缺点,无论从产品的技术含量还是从产品的应用领域上来看,在电生理分析技术中始终处于ling先的地位,代表着电生理分析技术发展的方向,是国内外细胞电生理分析实验室shou选实验仪器。 系统介绍 中文名称:Ionovation Compact 单细胞膜片钳自定义环境电生理分析系统; Innovation 单细胞膜片钳定义环境中重组分子进行电生理分析的可靠工具。这种高度灵活的桌面检测系统可适应多种实验条件,目前已经被用于对细胞膜离子通道、多种动物和植物转运蛋白和它们的细胞器进行研究。(详见参考文献可案例部分)
产品背景:
细胞膜离子通道是*古老的功能蛋白之一,广泛存在于从细菌到植物到动物包括人类在内的生物界,是许多基本生物活动如电活动、离子转运和细胞分泌等的基础。对于人类而言,由离子通道参与的功能(如电活动)是神经及心血管等系统生理功能的*基本形式之一。对离子通道功能调节机制的深入研究是了解其生理学和生理病理学意义的关键所在。
膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极头部与细胞膜的高阻封接,在电极头部笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。膜片钳技术发展至今,已经成为现代细胞电生理的常规方法。但是随着研究的深入,目前发现传统膜片钳主要有以下缺点:
·测量非常耗时
·需要高度熟练的操作者来进行实验
·需要建立千兆欧姆的封阻,但是千兆欧姆的封阻在测试时不稳定
·并不是所有离子通道都可以被测试,一般是配体或者在一侧可以交换缓冲液的才可以被测量
·膜片钳无法对细胞器进行分析
·在测量过程中的细胞往往形成穿孔
·结果在稳定背景下经过多次测量形成平均值,测量值离散度大
Ionovation 单细胞膜片钳比传统膜片钳的优势主要在于:
·不需要建立千兆欧姆的封阻
·是wei一一种采用双层封阻的测量方式
·可用于检测各种细胞膜上的离子通道、囊泡、配体
·容易实现对单个离子通道进行分析检测
·可以在膜的两侧改变条件,形成双信道进行分析
参考文献
1. Wei? K, Neef A, Van Q, Kramer S, Gregor I, Enderlein J.Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy.Biophys J. 2013 Jul 16;105(2):455-62. doi: 10.1016/j.bpj.2013.06.004.
2. Weingarth M, Prokofyev A, van der Cruijsen EA, Nand D, Bonvin AM, Pongs O, Baldus M.Structural determinants of specific lipid binding to potassium channels.J Am Chem Soc. 2013 Mar 13;135(10):3983-8. doi: 10.1021/ja3119114. Epub 2013 Mar 4.
3. Theis T, Mishra B, von der Ohe M, Loers G, Prondzynski M, Pless O, Blackshear PJ, Schachner M, Kleene R.Functional role of the interaction between polysialic acid and myristoylated alanine-rich C kinase substrate at the plasma membrane.J Biol Chem. 2013 Mar 1;288(9):6726-42. doi: 10.1074/jbc.M112.444034. Epub 2013 Jan 17.
4. K?stler K, Werz E, Malecki E, Montilla-Martinez M, Rosemeyer H. Nucleoterpenes of thymidine and 2'-deoxyinosine: synthons for a biomimetic lipophilization of oligonucleotides Chem Biodivers. 2013 Jan;10(1):39-61. doi: 10.1002/cbdv.201100338.
5. Schmidt F, Levin J, Kamp F, Kretzschmar H, Giese A, B?tzel K. Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One. 2012;7(8):e42545. doi: 10.1371/journal.pone.0042545. Epub 2012 Aug 3.
6. Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization. Biophys J. 2012 Feb 8;102(3):523-31. doi: 10.1016/j.bpj.2011.12.049. Epub 2012 Feb
7. Wei? K., Enderlein J. Lipid Diffusion within Black Lipid Membranes Measured with Dual-Focus Fluorescence Correlation Spectroscopy. Chemphyschem. 2012 Mar;13(4):990-1000.
8. Werz E, Korneev S, Montilla-Martinez M, Wagner R, Hemmler R, Walter C, Eisfeld J, Gall K, Rosemeyer H. Specific DNA Duplex Formation at an Artificial Lipid Bilayer: towards a New DNA Biosensor Technology. Chem Biodivers. 2012; Feb;9(2):272-81.
9. Schmidt F, Levin J, Kamp F, Kretzschmar H, Giese A, B?tzel K. Single-channel electrophysiology reveals a distinct and uniform pore complex formed by α-synuclein oligomers in lipid membranes. PLoS One. 2012;7(8):e42545. doi: 10.1371/journal.pone.0042545. Epub 2012 Aug 3.
10. Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization Biophys J. 2012 Feb 8;102(3):523-31. doi: 10.1016/j.bpj.2011.12.049. Epub 2012 Feb 7.
11. Wei? K., Enderlein J. Lipid Diffusion within Black Lipid Membranes Measured with Dual-Focus Fluorescence Correlation Spectroscopy. Chemphyschem. 2012 Mar;13(4):990-1000.
12. Werz E, Korneev S, Montilla-Martinez M, Wagner R, Hemmler R, Walter C, Eisfeld J, Gall K, Rosemeyer H. Specific DNA Duplex Formation at an Artificial Lipid Bilayer: towards a New DNA Biosensor Technology. Chem Biodivers. 2012; Feb;9(2):272-81
13. Erika Kovács-Bogdán, J Philipp Benz, Jürgen Soll, Bettina B?lter Tic20 forms a channel independent of Tic110 in chloroplasts BMC Plant Biol. 2011; 11: 133.
14. Honigmann A, Walter C, Erdmann F, Eggeling C, Wagner R. Characterization of horizontal lipid bilayers as a model system to study lipid phase separation. Biophys J. 2010 Jun 16;98(12):2886-94.
15. Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange AThe native conformation of the human VDAC1 N terminus. Angew Chem Int Ed Engl. 2010 Mar 1;49(10):1882-5.
16. Kostka M, H?gen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A. Single-particle characterization of iron-induced pore-forming alpha -synuclein oligomers. J Biol Chem. 2008 Feb 7.
17. van der Laan M, Meinecke M, Dudek J, Hutu DP, Lind M, Perschil I, Guiard B, Wagner R, Pfanner N, Rehling P. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol. 2007; 9(10):1152-9.
18. Pagliuca C, Goetze TA, Wagner R, Thiel G, Moroni A, Parcej D. Molecular properties of Kcv, a virus encoded K+ channel. Biochemistry. 2007; 46(4):1079-90.
19. Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R. OEP37 is a new member of the chloroplast outer membrane ion channels J Biol Chem. 2006; 281(26):17989-98. Epub 2006 Apr 19
20. Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Muller H, Jensen RE, Wagner R, Pfanner N. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel Mol Cell. 2002; 9(2):363-73.
21. Meuser D, Splitt H, Wagner R, Schrempf H. Mutations stabilizing an open conformation within the external region of the permeation pathway of the potassium channel KcsA. Eur Biophys J. 2001; 30(5):385-91.
22. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment] Nature. 1998; 395(6701):516-21.
暂无数据!