深研院新材料学院在锂离子正极材料结构与性能研究取得重要进展


来源:北京大学

[导读]  北京大学深圳研究生院新材料学院潘锋教授课题组最近在LiMn1-xFexPO4材料的结构与性能研究取得重要进展。

中国粉体网讯  锂离子电池作为高效的能量存储系统在交通运输领域具有广泛的应用,包括混合式动力电动车(HEV),插电式混合动力汽车(PHEV)和电动汽车(EV),但是现有商用的锂离子电池正极材料不能够满足人们对于能量密度、倍率性能以及稳定性的需求。LiNixCoyMnzO2的安全性、流程繁琐性等问题阻碍了大规模的使用;尖晶石锰LiMn2O4面临严重的容量衰减问题;安全性能好且廉价的LiFePO4摆脱不了低工作电压、低能量密度的限制,为了提高工作电压和能量密度,现在学术界和工业界对于LiMn1-xFexPO4材料的研究越来越重视。


北京大学深圳研究生院新材料学院潘锋教授课题组最近在LiMn1-xFexPO4材料的结构与性能研究取得重要进展。他们成功合成了两种高铁锂反位量的α-LiMn1-xFexPO4纳米材料(50纳米的颗粒),相近的反位程度却表现出了极大的电化学性能差异。通过和布鲁克海文国家实验室、德国于利希国家实验室、美国阿贡国家实验室等合作,课题组对两种材料的结构进行了深入分析,用高精度球差电子显微镜首次发现磷酸铁锰锂的第二相β-LiMn1-xFexPO4以量子点(2纳米左右)嵌在α-LiMn1-xFexPO4 50纳米颗粒中。研究发现性能好的材料其铁锂反位量高,产生了许多的缺陷位置,因为这些缺陷点打通了相邻的其他方向的传输,使得锂离子的传输从一维锂离子通道传输扩展成为三维通道传输,从而提高了该锂电池材料的充放电性能。如果α-LiMn1-xFexPO4材料存在第二相β-LiMn1-xFexPO4以量子点嵌入形成套嵌结构的纳米材料后,嵌入量子点将堵塞部分锂离子的三维通道传输,从而降低了锂离子在整个晶体的传输效率,影响了该锂电池材料的充放性能。



第二相β-LiMn1-xFexPO4以2纳米量子点嵌入到α-LiMn1-xFexPO4 50纳米颗粒 


三维锂离子通道通畅传输及被套嵌的量子点阻塞的材料表现不同的充放电效率


该研究成果发表在国际材料与能源的顶级期刊Nano Letters (Nano Lett., 2017, 17 (8), 4934–4940, 影响因子为12.7,Nature Index杂志之一)上,该工作由潘锋教授和布鲁克海文国家实验室的章炜博士指导,由2015级博士生胡江涛作为第一作者及团队的合作下完成。

文章链接:http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b01978


推荐8
相关新闻:
网友评论:
0条评论/0人参与 网友评论

版权与免责声明:

① 凡本网注明"来源:中国粉体网"的所有作品,版权均属于中国粉体网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:中国粉体网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

粉体大数据研究
  • 即时排行
  • 周排行
  • 月度排行
图片新闻