看了原位膨胀测试系统的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
电芯实际使用时是装配在模组中的,充放电过程中厚度的变化引起的膨胀力会直接影响电芯、模组以及电池包的性能、安全和可靠性等。为了高效的研究电芯膨胀与其具体表现的关系,对电芯在实际工作是的结构与状态的模拟与仿真是十分重要的,在研究中发现,材料不可逆损耗与劣化引起的电芯析锂,导致电芯不可逆的变厚。对于膨胀及析锂的传统方法非原位、破坏性、成本高、效率低而且偏差大,已经不足以满足当前研究开发需求。
应用案例
1、不同binder材料
三种不同Binder材料电芯的膨胀对比,主要差异在于单循环满充膨胀厚度,Binder1的膨胀抑制效果**,可用于不同Binder材料的评估筛选
2、电芯不可逆膨胀评估
锂离子软包电池在充放电过程中,随着锂离子在正负极材料中的脱嵌反应,正负极的厚度会发生一定程度的膨胀或收缩,从而使电池整体表现出膨胀或收缩的现象。
对软包LFP/Graphite电芯进行充放电一圈的膨胀厚度测试,电芯在满充状态对应的**厚度膨胀百分比约1.7%,满放后有约0.02%的不可逆厚度膨胀。
3、不同充放电倍率情况下电芯膨胀情况
锂离子电池在充放电过程中,随着锂离子在正负极材料中的脱嵌反应,正负极的厚度会发生一定程度的膨胀或收缩,从而使电池整体表现出膨胀或收缩的现象。而不同充放电倍率情况下,电芯的膨胀情况也会有所差异
对硬壳电芯LFP/Graphite进行充放电一圈的膨胀力测试,膨胀力变化量的大小随着倍率越大,膨胀力变化量越大。
暂无数据!
在电池制造过程中,极片的制造质量是产品的质量的重要影响因素之一,而极片制造的关键工序之一为合浆工序,合浆工序所产出的浆料质量,将直接决定所涂覆形成的极片的质量。因此,判定浆料的质量优劣,是电池制作的关
在锂离子电池领域,能量密度是衡量材料储能能力的一个重要参数,是评估电池性能的一项重要指标。能量密度是指单位体积内所含的能量,一般来说与压实密度呈正相关关系。提高压实密度通常意味着提高了材料的紧密程度和
随着商业化动力电池的迅猛发展,对电芯生产的一致性要求也越来越严苛。粉末材料作为制作电芯的重要成分,其稳定性要求也相应提高。电阻率是粉末样品重要的一个参数,也是电芯厂家最为关注的参数之一,长期监控粉末材