看了原位体积测试系统的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
原位体积测试概述
电芯在充放电过程中,电子会由外电路到达负极后再与负极表面的电解液发生氧化还原反应,生成气体。对电芯所生成的气体进行实时采集,能够根据气体生成速率和气体生成总量进行研究分析,推断电芯在充放电过程中的性能测试状况。现有技术一般采用“排水法”来检测电芯产气量,通过采集电芯产气时容器逸出的液体体积和单位时间内的逸出量,从而等量换算电芯产气的总量和产气速率。
然而,由于表面张力的作用,同时也受气候干燥条件和容器壁的粗糙度影响,液体在流动时容易蒸发或者残留在容器壁上,使得液体在容器上的逸出量往往少于实际的气体产出量,使得检测结果不准确,另外,以往的技术方法主要通过单次并多次测量电芯体积来记录数据,而无法实时监控电芯在测试过程中的产气量变化,比如电芯在存储与充放电过程中的产气量变化。
应用案例
1、LFP体系电芯过充产气体积分析
可在充放电过程中实时监控产气体积变化情况,LFP体系电芯在过充实验中,体积随着电池充电过程进行变化,可以看出过充时产气的拐点位置。
2、不同充放电体系膨胀体积变化情况
三款不同体系电芯的体积变化曲线,结合正负极材料脱嵌锂相变分析各体积变化曲线的差异,其中LFP体系电芯在充放电过程中会出现“驼峰”的现象,而LCO和NCM体系则没有该现象,且NCM电芯在充电恒压阶段会出现体积稍微减小的趋势。这些体积变化现象的差异对比,一方面能为锂电研发人员提供一种原位表征电芯体积膨胀性能的方法,另一方面也能为研究特定体系电芯的体积膨胀性能时提供数据机理参考。
3、不同温度下存储产气体积变化
在70℃条件下,NCM电芯总产气量小于0.4mL,体积变化百分比约6%,,而在85℃条件下,大约存储20min后,产气量开始显著增加,存储4h后,单包覆材料的总产气量达到2.4mL,体积变化百分比约46%,体积变化百分比约27%, 采用原位方法连续监控存储产气行为,可获得产气起始点和**点,有助于研发人员针对性的开展下一步研发工作。
暂无数据!
在电池制造过程中,极片的制造质量是产品的质量的重要影响因素之一,而极片制造的关键工序之一为合浆工序,合浆工序所产出的浆料质量,将直接决定所涂覆形成的极片的质量。因此,判定浆料的质量优劣,是电池制作的关
在锂离子电池领域,能量密度是衡量材料储能能力的一个重要参数,是评估电池性能的一项重要指标。能量密度是指单位体积内所含的能量,一般来说与压实密度呈正相关关系。提高压实密度通常意味着提高了材料的紧密程度和
随着商业化动力电池的迅猛发展,对电芯生产的一致性要求也越来越严苛。粉末材料作为制作电芯的重要成分,其稳定性要求也相应提高。电阻率是粉末样品重要的一个参数,也是电芯厂家最为关注的参数之一,长期监控粉末材