公司介绍
东莞东超新材料科技有限公司(简称东超新材)创立于2014年,是从事高端功能粉体设计、研发、生产、销售于一体的国家高新技术企业。产品广泛应用于智能消费电子、通讯设备、光伏发电、高端装备、医疗行业、新能源汽车等领域。 公司拥有7000平方米的现代化生产基地,年产能可达到8000吨以上,技术配备高水准的研发团队,配有专业的导热粉体材料研究实验室、表面改性研究实验室、以及精密先进的检测室,并与多所高校和研究机构长期建立技术合作和人才培育输出。公司通过****:2015质量管理体系认证和IATF16949:2016汽车行业质量管理体系,已成为多家知名汽车企业原材料提供商。公司秉承“创新、品质、服务”的企
主推产品
4.0W/m·K 低粘度灌封胶导热粉
面议6.0W/m·K 高性能凝胶用导热粉
面议13.0W/m·K 高性能硅胶垫片导热粉
面议组合推荐产品
推荐产品
更多
最新动态
更多
一、热阻相关专业术语解析1. 热阻(Thermal Resistance) 热阻是描述材料或界面阻碍热量传递能力的物理量,单位为℃/W。其定义为:单位功率下材料两端的温度差,即 ( R = Delta T / P )。在热界面材料(TIM)中,热阻由材料本身的热导率、接触表面的微观空隙及填充效果共同决定。2. 接触热阻(Contact Thermal Resistance) 当两个
引言 随着5G时代的到来,导热材料在电子设备和大型高压设备中的重要性日益凸显,这些设备包括能源系统、航空航天飞机等。在高功率密度操作下,设备产生和积累的热量会导致温度升高,威胁设备的工作稳定性。为此,开发高导热聚合物复合材料成为了解决这一问题的关键。聚合物基复合材料因其成本低、重量轻、力学性能优异等特点,在微电子、能源等领域得到了广泛应用。然而,聚合物本身导热性低的缺点限制了其进一步
聚合物材料因其质轻、耐腐蚀、易加工等特性,在电子封装、汽车制造、航空航天等领域得到广泛应用。然而,传统聚合物材料普遍存在导热性能差、热稳定性不足等问题,限制了其在高温或高功率场景中的应用。近年来,通过添加导热无机填料改善聚合物性能的研究备受关注。本文将从聚合物的结构特点出发,分析其性能短板,并探讨以导热无机填料为核心的优化方案。一、聚合物的结构特点与性能短板1. 聚合物的结构特点聚合物由长
引言 随着电子器件向高功率密度、微型化方向快速发展,热管理成为制约设备性能与可靠性的核心问题。传统聚合物材料因导热性能差(通常低于0.5 W/(m·K)),难以满足现代散热需求。通过添加高导热无机填料(如氮化硼、氧化铝、碳化硅等)构建导热通路,已成为提升聚合物基复合材料导热性能的关键策略。然而,填料的分子间相互作用(如界面结合力、共价键连接、表面功能化等)直接影响导热通路的形成效率与稳
随着电子设备向高性能、小型化方向发展,散热问题日益突出。聚氨酯胶粘剂因其优异的粘接性能、柔韧性和可加工性,在电子封装、汽车电子、LED照明等领域得到广泛应用。然而,传统聚氨酯胶粘剂的导热性能较差,难以满足高功率器件的散热需求。近年来,通过在聚氨酯基体中添加导热粉体填料,开发高导热聚氨酯胶粘剂成为研究热点。本文将探讨导热粉体填料在聚氨酯胶粘剂中的协同效应与网络构建,并介绍东超导热粉体在4
随着人工智能、大数据和云计算技术的快速发展,DeepSeek设备作为高性能计算的核心载体,正被广泛应用于各行各业。然而,随着用户数量的激增和设备运行负载的加大,散热问题逐渐成为制约DeepSeek设备性能稳定性和使用寿命的关键瓶颈。如何在有限的空间内实现高效散热,确保设备长时间稳定运行,成为行业亟待解决的难题。在这一背景下,非金属高导热粉体填料的出现为散热问题提供了全新的解决方案,尤其
一、引言六方氮化硼(h-BN)粉末,作为一种具有独特结构和优异性能的无机非金属材料,近年来在材料科学领域备受关注。h-BN粉末以其类似石墨的层状结构而闻名,每一层由硼和氮原子以六边形排列组成,层与层之间通过范德华力连接,这种结构赋予了它诸多独特特性。在物理特性方面,h-BN粉末具有低密度、高导热性和低热膨胀系数,使其在高温环境中表现出卓越的热稳定性和抗热震性。化学上,它表现出良好的耐化学腐蚀和高温
填料表面改性包覆技术在导热界面材料(TIM)中的应用具有重要意义。TIM是电子设备中用于连接芯片与散热器之间的关键材料,其主要功能是高效传递热量,从而确保电子设备的稳定运行。然而,传统的聚合物基TIM材料通常导热系数较低,难以满足快速传热的需求。为了提高TIM材料的导热性能,通常在聚合物基体中添加导热填料,如氧化铝、氮化铝等。然而,填料与聚合物基体之间的相容性问题往往导致填料团聚、界面热阻
资料中心
更多
微视频
更多
解决方案
更多
针对0.5~1mm厚度、12W/m·K导热性能要求的硅胶垫片,东超新材提供了一款高性能的导热粉体解决方案。在高端计算机CPU、GPU等关键部件的散热应用中,传统的12W/m·K导热硅胶垫片往往不足以满足散热需求。因此,更倾向于使用超薄型硅胶垫片,以实现热量的快速传递和散发。超薄导热硅胶垫片由于热传导路径短,散热效果更佳,特别适用于散热要求极为严格的环境。 在制备高
提高10W/(m·K)导热凝胶的抗垂流和抗开裂能力是一个关键的技术挑战。在通常情况下,当这种导热凝胶被用于填充竖直放置的发热器件与散热器件之间的较大间隙,如RRU基站,它会在高温测试环境中出现滑动甚至裂缝,这可能会导致热传导效率下降,进而影响设备的稳定运行。 采用特殊工艺对高导热粉体填料组合物进行优化:东超新材料公司通过使用新型耐高温处理剂,对导热粉体进行均匀表面改性,降低了导热
制备具有13.0 W/(m·K)导热系数的凝胶,通常需要加入大量高导热粉体,但这会导致粘度增加、挤出速率下降和成本提高。那么,导热粉体如何在13.0 W/(m·K)高导热凝胶下获得较高的挤出量呢? 为了在保持较低粘度和成本的同时,使凝胶达到13W/(m·K)的高导热系数,关键在于采用低填充量的高性能导热填料。东超新材通过最新的改性技术,使用自主合成的有机硅高分子表面处理剂,通
最新方案
更多
虚拟号将在 秒后失效
使用微信扫码拨号